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Lecture #13
CMOS interfaces
for DNA Detection
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Lecture Outline

(Book Bio/CMOS: Chapter’ paragraphs § 7.1-8)

CMOS for capacitance
detection

Charge-Based Capacitance
Measurement (CBCM)
Method

Frequency-to-Capacitance
Measurement (FTCM)
Method
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CMOS architectures for VLSI

Drop of blood
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The Capacitance DNA Detection

DNA molecules
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Unlabeled ssDNA may be detected with capacitance

measurements as due to charge displacement
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Current Based Capacitance
Measurement (CBCM)

THE CAPACITANCE !

Method for a precise Capacitance measurement

(c) S.Carrara



CMOS for CBCM detection
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The circuit assures the square signal generator, an inverters,
and an integrator to calculate the average current
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The Chip Electrodes Layout
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The VLSI Implementation of
the Chip (CBCM method)

(CBCM = Charge Base Capacitance Mode)
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The problem of overlapping signals

External Ck

Ck1 All switches
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ouT
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ouT1

Fig. 4. Schematic representation of the signals flow used in the experiments.

Ck and Ck signals need to be not-overlapping in
order to assure the correct square signal generation
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The circuit solution

Pulses Generator Output Buffer
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Fig. 5. Schematic plot of the block used to generate not overlapping clock signals.

A simple logical circuit and a digital multiplexer
assures not-overlapping Ck and Ck signals
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The Measurements Set-up

PCB:
analog signals « Power
generation V_,Vg supply
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Fig. 8. Schematic representation of the measurement setup.

The Chip has been mounted onto a PCB for PC
remote control and testing
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Liquid Measurement set-up

Chip is glued on a PCB
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DNA detection in CBCM mode
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Fig. 10. Capacitance measurements of electrode couples on different chips.

The chip-by-chip reproducibility has been not so high:
the problem is on the chip electrodes cleaning
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Capacitance vs Frequency
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Fig. 9. Measured capacitance versus charge/discharge frequency on clean
gold electrodes. The continuous line shows the fitting.

The trends of the measured capacitance vs
frequency decrease the accuracy of the
measurements in CBCM mode
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Good DNA Layer
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DNA Layer 1s independent by the frequency thanks
to probes immobilized on Ethylene-Glycol Thiols
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CBCM on good DNA Layer
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CBCM method on a DNA Layer that 1s
independents by the frequency
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Bad DNA Layer

~ Highly depending by the frequency
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DNA Layer 1s dependent by the frequency since the
monolayer 1s not extremely well formed
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CBCM on bad DNA Layer
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CBCM method on a DNA Layer that
dependents by the frequency
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DNA detectlon in CBCM mode

_______________________ 62;74 %
80 Hybridization reaction:
_ 40 I specific bindings 34.74 %
Large Stanrdzard deviation 13,07 %
< . _I """ NonHybridization:
a-specific bindings
18,46 %
20— === ====23 .
-40

Fig. 12. Capacitance variations due to specific and a-specific bindings (upper
and lower bands of measured capacitances, respectively). Positive values
indicate capacitance decrease.

The reproducibility on the same chip-spot
IS not so high: here the problem is on the
nano-scale aperture in the probes
surfaces
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Frequency to Capacitance
Measurement (FTCM)

Principle: Frequency To Capacitance Mode




Current Based Capacitance
Measurement (CBCM)
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The Taylor Series
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Linearity by approximation in the right range of values
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Current Based Capacitance
Measurement (CBCM)
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Method for the estimation of the Capacitance
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Frequency to Capacitance
Measurement (FTCM)

Principle: Frequency To Capacitance Mode
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Electrodes Layout

Nitride deposted
for preparatio
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Chip Architecture (FTCM)
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Measurements Set-up
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Fig. 9. Schematic representation of the measurement set-up. Voltage reference
signals and power supply are generated by circuitry on the PCB. Digital control
signals are provided by a PC. The LabView interface manages all the parameters
involved in the measurements and shows directly on the screen the measurement
results of the whole array.
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Validation Test

A test structure has been implemented on chip beside the
array to characterize the measurement circuit with
discrete test capacitances (10 pF -10 nF)

Slope = 0.9837
Intercept = 62 pF
c<0,3%

Offset is due to parasitic
capacitances of cables
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Probes property on FTCM mode
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Fig. 12. Frequency versus reference current showing that a significant influ-
ence of the parallel resistance on the measurement result occurs only at low
current values and at /7 p values lower than 680 k{2,

The linearity between the current and the measured
frequency 1s lost at low current if the CMOS/Bio

interface 1s not a perfect capacitor
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Liquid Measurement set-up
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DNA dgtection in FTCM mode
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Fig. 13. Frequency changes of the average of reference electrodes (continuous
line), and the average of functionalized electrodes (dashed line) show a larger
gap after DNA hybridization step considering the stable value reached at the end
of the transient.

Time stability on the single chip-spot i1s pour due
to nano-scale aperture in the probes surfaces

(c) S.Carrara 31



DNA detection in FTCM mode
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Fig. 14. Typical variations for several pixels among functionalized electrodes
and the average value of reference gold electrodes. Capability to distinguish
between specific and nonspecific binding is shown for each pixel.

In chip spot-by-spot reproducibility 1s improved
due to better cleaning of the spot gold electrodes

(c) S.Carrara 32



Amperometric Detection of DNA

Figure by Frey et al, IEEE ISCAS 2015

interdigitated
Au-electrodes

Electrochemical labels might be used to detect DNA

(c) S.Carrara 33



Amperometric Detection of DNA
<<)/@ (D Q“

substrate C)

oxidation & ’
@ (9 reduction
<,
&)
Generator
red < ox +e- Collector
e) OX + € «= red

Redox species can be then measured at the electrodes
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Amperometric Detection Principle

How it works:
v First, single stranded DNA molecules (about 20 bases)

are immobilized by using a spotting machine on top of the

Az

(é %’ gold electrodes due to gold-thiol coupling.
C

T

v Then, the chip is flooded with an analyte containing

E E labeled target DNA ss: hybridization takes place in case

) of matching.

v A suitable substrate is applied to the buffer solution and
it is enzymatically cleaved by the label.

v'Resulting species starts an electrochemical redox
process at the electrodes.

v'Faradaic currents generated by the related redox

process is detected and transduces DNA hybridization
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Enzymatically cleavage
& redox process

a) Process at the label

v The label cleaves the

3.
2- -PO, +OH-
NH, < > OPO; —— HO_Q_NHz secondary probe

Alkaline
p-Aminophenylphosphate Phosphatase p-Aminophenol
(ALP)
Substrate Label

b) Redox process at the electrodes

e, -2H"
v' The product of the HO—Q_NHz = O NH
cleavage is generating an @ Red: p-AminophenoM O Ox: Quinoneimine
oxidation process at the |

’ V‘ ;

L L

oxidized, a reduction at

DD &

<«

the cathode reference anode / generator  cathode / collector ~ counter
electrode oxidation: reduction: electrode
Red ->Ox +2 e Ox + 2e -> Red
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The Electrochemical Cell

2 Counter electrode Ve & Ve
have to be
different

3 Generato
electrode I,
VG(_
% )
Collecto V
electrode T
1 Reference electrode Potentiostat

A 4-electrode Electrochemical Cell 1s here required
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Cyclic Voltammetry
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Match/Mismatch DNA Hybridization
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Successful detection of the matching sequence by
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Gibbs free energy for Match/Mismatch

Roughly
50% less

duplex Experimental
AG [kJ/mol]

GGTTATTGG -26.8
CCAATAACC
GGTTCTTGG 314
CCAAGAACC
GGTTTTTGG -29.5
CCAAAAACC
GGTTATTGG -12.0 <
CCAAAAACC
GGTTCTTGG -12.4
CCAATAACC
GGTTTTTGG ols.carara [T 17.5
CCAAGAACC
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Match/Mismatch DNA Hybridization

= at1G=-50 mV and IC= +350 mV; pH: 8,0
with 4 mM p-Aminophenylphosphat (p-APP)
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Successful detection of the matching sequences

but significant 31gna1 by non-matching too
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Current CMOS Readout
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Frequency-To-Current Conversion (FTCC)
method 1s used here too
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Current CMOS Readout
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Sensor-site circuit architecture with digital output
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Array Architecture

reference electrode
counter electrode

potentiostat
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row decoder

column decoder

control voltages digital I/O

Whole Chip architecture including Row/Column decoders
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The realized IC
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Chip microphotograph. Total dimensions are 6.4 x 4.5 mm?.
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Exposed IC-Die Electrodes
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Electrochemical electrodes are created on top of the
last CMOS metal Al layer
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Freqguency Readout
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Test Measures

Response Calibration

;
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DNA Detection

Full-matching DNA
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Row &: full matching DNA, row 7: full mismatching
DNA, all other positions not functionalized.

(c) S.Carrara 49



